

H₂ Storage: new £10+ billion UK infrastructure sector

The Royal Society predict UK will need c. 60-100 TWh of new build hydrogen storage by 2050, National Grid 2023 FES STS predicts ~50 TWh by 2050, primarily to store excess renewable electricity to meet future peak demand periods

Translates to a new UK asset class potentially of ~£10+ billion, with potential £ multibillion per year revenue market.

GOV/DESNZ supports underground salt-cavern storage as the most costeffective and readily deliverable large-scale energy storage solution. H₂ storage Revenue Support included in 2023 Energy Act. Live: 1st Allocation round Q3 2022

Initial hydrogen economy will be regional: decarbonisation requires clustered storage, production and demand. Only Dorset, E. Yorkshire and Cheshire salt basins suitable for large mainland salt-caverns.

UKEn: H₂ Storage Portfolio

- Green Energy Developer set up by highly experienced AIM listed project development entity/team.
- Portfolio of 3 new national scale coastal salt cavern sites, each of ~2.7 TWh (~0.9 bn m³) ~15-20 caverns/site. Each site potentially = ~20% of predicted UK 2050 storage demand*.
- 2 sites in Dorset, 1 in E. Yorkshire. Sites secured (60 years) or under advanced negotiation. Leading engineering, planning consultants and advisors engaged since 2021, including DEEP.KBB, Penspen, Xodus Group, Hill Dickinson, Zetland.
- Biweekly to monthly engagement with Government: UKEn one of 5 storage operator members of DESNZ Hydrogen Storage Business Model Design Group. Extensive ministerial level political engagement.
- 2031-32 target operational start.
- Portfolio has offshore wind, green hydrogen, H2P and hydrogen import/export addon opportunities

Why is UKEn H₂ Storage needed?

Hydrogen storage is fundamental to the operation and success of the UK's future sustainable low carbon energy system :

1

Hydrogen Battery

Avoids the need to curtail renewables in off peak periods. Surplus renewable/low carbon power converted to H₂, stored for future H2P* to supply peak short-long cycle demand or when there's no wind/sun

2

Resilience & Efficiency

Storage balances peak demand and production.
Significantly reduces required peak H₂ generation capacity necessary to meet peak demand. Ensures pipeline stability

3

Security of Supply

Storage provides rapid access to H₂ to meet national and local shortlong term demand

4

Inter-seasonal & strategic storage

Underground geologic H₂ storage is the optimum medium for large scale inter-seasonal strategic energy storage

^{*} H2P=hydrogen to power i.e. electricity generated by clean combustion in hydrogen fuelled turbines

H₂ Storage: Primary end-use in early network stage to 2050

- H₂ Pipeline stability: ensure Project Union & H2 Connect pipelines are full to maintain operating pressure.
- Operational Storage: H₂ producers & end users- require 2-4 weeks supply to maintain system resilience and efficiency i.e., to permit peak demand to be met.
- H2P (hydrogen to electrical power) e.g., Marchwood and Chickerell power plants within Solent Cluster, Didcot and other Green/low carbon H2 power in Southern UK & S. Wales, Humber, Teesside.
- Inter-Seasonal storage: now seen as much lower component of storage demand unless significant hydrogen based winter heating occurs.

UKEn H₂ Storage: DESNZ First Allocation Round timing

Illustrative timeline of a first allocation round if launched in the second half of 2024 in parallel with finalising the commercial design

	2023			2024			2025			2026	2027	2027 20		028 2029		2030	2031	2032	
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4									
M.E - policy development																			
M.E. publication																			
M.E – informal feedback						cr	ncl. full a riteria, s publica		g, and										
Further policy development		-		•		ar	pplication	on guid	ance										
Pre-allocation engagement			-					lau	unched with fir	ation rou d in para inalising	allel								
Launch 1 st allocation round				7					mmerc	cial desi									
Bilateral negotiations											SI	Awarding contrubject to secon legislation bein	ndary						
Award contracts												place							
Commercial Operational Date Window											C	OD window							

UK Sovereign Revenue Support

UKEn/industry lobbying helped Hydrogen Storage amendment into the 26/10/23 Energy Act. UKEn member of DESNZ Hydrogen Storage Business Model Design Group since Q4 2022.

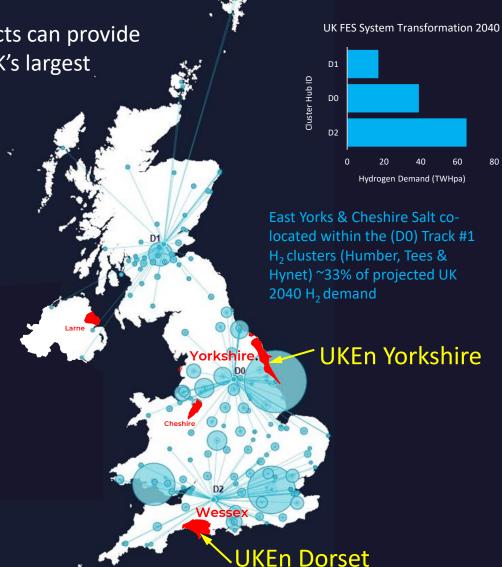
DESNZ announced a "minded to" revenue support model 2nd August 2023.

Revenue Support currently aims to provide 15-year sovereign underwritten annual revenue 'Floor' to repay capital and fixed operating costs plus a small return on capital employed at a level similar to wind farm CfD (i.e.~1-2% over LIBOR/Gilts). If granted, support creates significant terminal value in year 16 post support plus 30-45+ years remaining debt-free project life.

Revenue support to include profit/gainshare upside to enable a higher target return above the revenue support floor return for efficient/active operators. Private law contracts envisaged.

First storage allocation round announced on 14/12/23. Round start timing ~Q3 2024, bids by end Q4 2024. Signed contracts by Q4 2025. Further rounds to follow, 2nd Round possibly Q3 2025. General Election may cause delays

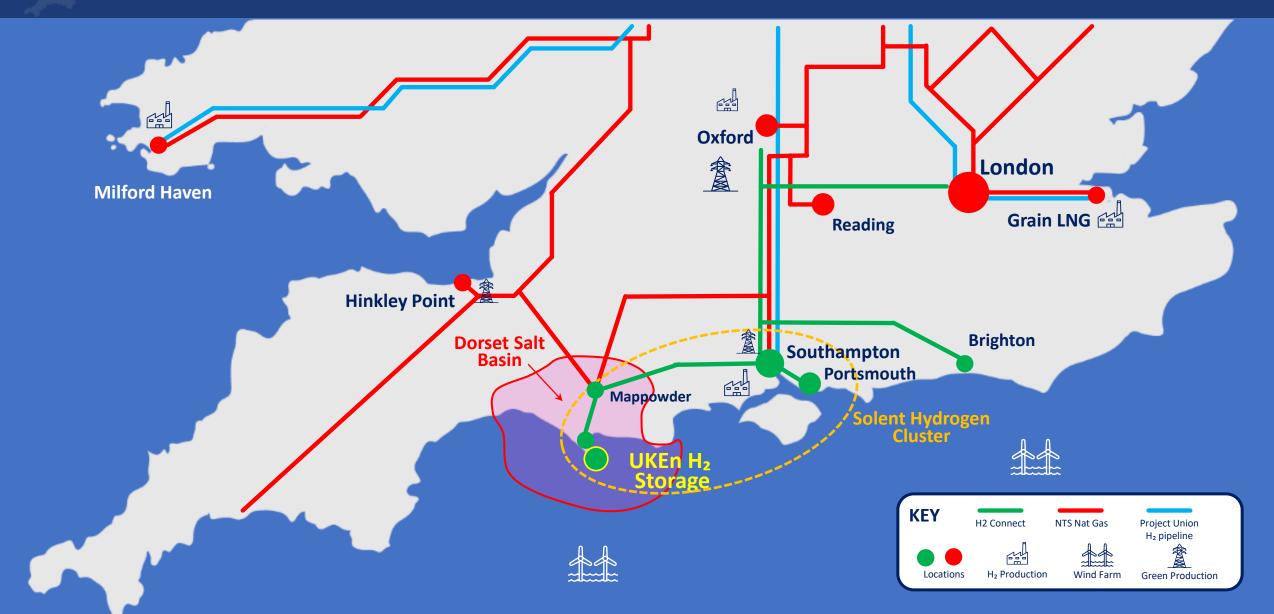
Storage for UK's two largest H2 Demand Centres



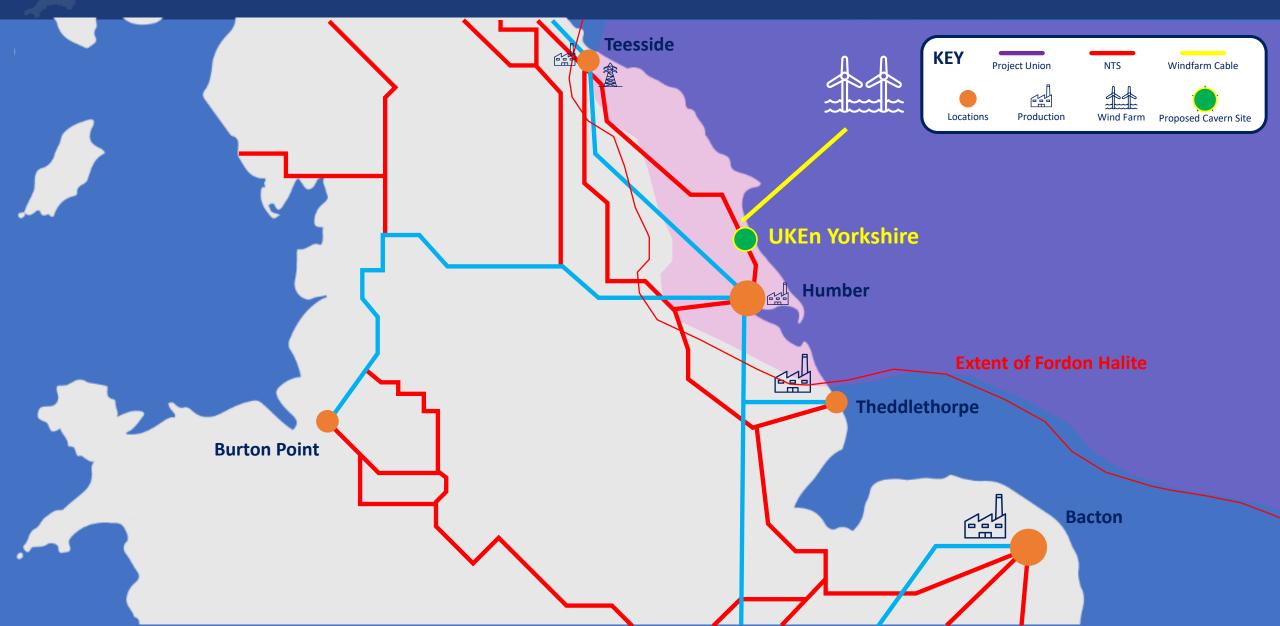
UKEn's Dorset & Yorkshire projects can provide strategic storage solutions for UK's largest hydrogen demand clusters

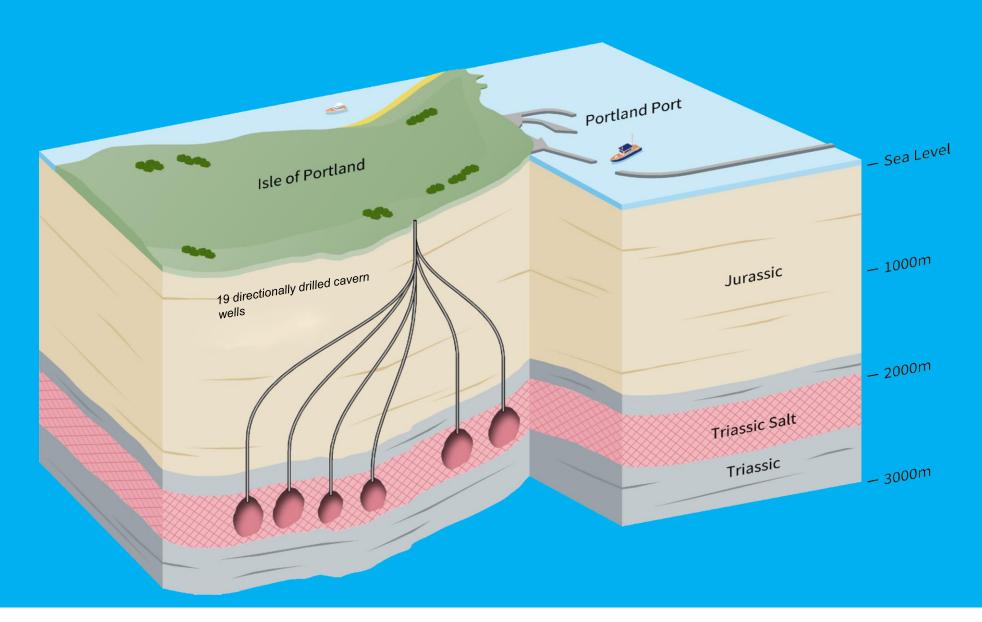
Salt (halite) deposit capable of holding large caverns

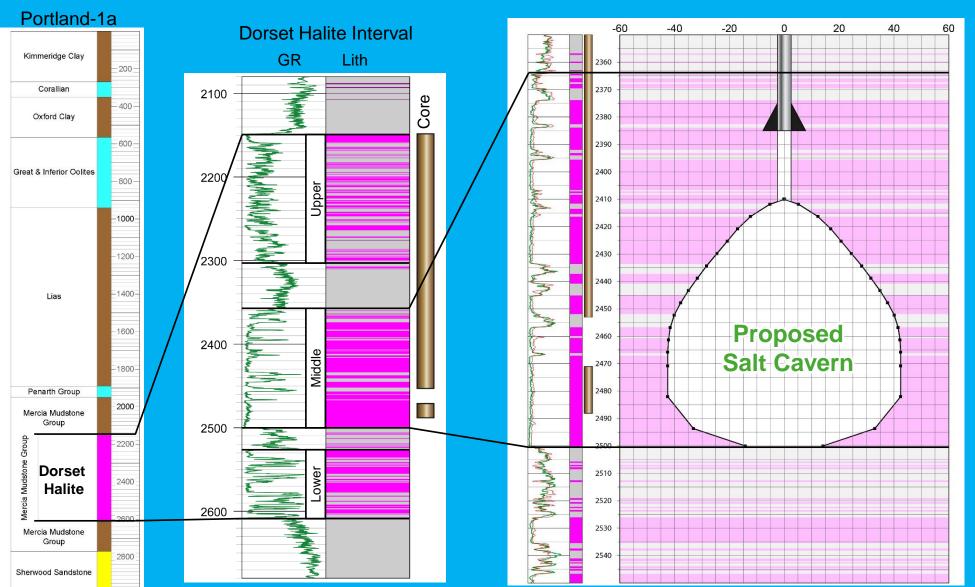
2040 H₂ demand centre


D2 Cluster ID/centre of gravity

Dorset provides the only colocated salt Deposit within the Southern **UK** super cluster (D2) ~56% of projected 2040 UK H₂ demand


UKEn Dorset: A key element of S. UK H₂ infrastructure


UKEn Yorkshire: potential key element of NE H₂ infrastructure


Dorset ~0.9 bcm (~2.7 TWh static volume)

Dorset salt cavern design

- Drilled in 2006, ~100m from UKEn site
- High quality electric log data plus 326m of core through Dorset Halite Upper and Middle Salt
- Core and log data used to calibrate DEEP.KBB geotechnical cavern design
- Salt properties defined by core can be extrapolated to other areas in the basin via electric log correlation

DEEP.KBB cavern design Logs plotted in MD (m)